Categories
IT Agility

How can service providers elevate customer churn prediction by leveraging Quantum Machine Learning?

According to Nielsen, “The right solutions could save up to $1.6 billion of revenue lost to customer churn in a year.”

Introduction

The Connectedness industry has encountered various challenges throughout its existence, with one major challenge being customer churn. Customer churn refers to the percentage of customers who terminate their subscriptions or switch to a different telecom provider within a specified time limit.

The Connectedness industry experiences the highest customer churn rate compared to other sectors. According to a study by the Aberdeen Group, the average telecom company loses $100 per month for every customer that churns. This means that a company with a 10% churn rate could be losing $120 million per year.

According to Forrester, a bad experience is enough to prompt customers to consider switching providers. This makes continuous investment in customer churn prediction necessary, given that customer retention is more cost-effective than customer acquisition. High customer churn has detrimental effects on the business, including revenue loss, missed cross-selling and upselling opportunities, and difficulties in forecasting and planning for future growth.

The emergence of data collection techniques and the need to generate deep insights have led to the expansion of analytics applications across several domains. However, Communications Service Providers generate vast amounts of data every day, making it a significant challenge to draw meaning out of such complex, multi-faceted data.

Customer churn analysis is resource-intensive and requires extensive computational power

As the volume and type of data captured in the Connectedness industry increase exponentially, the number of metrics and evaluations that require processing also increases. Customer churn prediction and analysis are usually carried out using ML modeling. Numerous attributes are used for research, such as the billing data, Call Detail Records (CDRs), and Contract/Subscription data. Hence, customer churn prediction requires significant computational power.

Furthermore, customer churn is a complex process that involves multiple interdependent parameters. For instance, network quality, which directly affects customer satisfaction, can be impacted by several other factors, such as network congestion, signal strength, and coverage area. A recent Gartner report predicts that enterprise-generated data processed in data centers, or the cloud, will increase to 75% from the current 10% by 2025. In other words, more than 180 zettabytes of data will be generated globally from over 41 billion connected devices. As more parameters are added to make precise predictions, the current predictive methods will become ineffective in processing and analyzing the multi-faceted and intricate data, which require extensive time, energy, and resources.

Major challenges with the Classical Machine Learning1approach of churn prediction

  • Examining large and diverse datasets to provide personalized solutions is a challenging task that often results in resource wastage
  • Allocation of resources is challenging due to the shift from a centralized to a
    hyper-distributed subscriber environment
  • Analyzing and deriving insights from multidimensional data is cumbersome, leading to difficulties in identifying and extracting complex churn patterns

Service providers must embrace Quantum Machine Learning to overcome the shortcomings of Classical ML, such as slower processing times, inability to process large amounts of data in parallel, and low accuracy.

Quantum Machine Learning (QML): A strategic imperative to predict customer churn and maintain the competitive edge

Quantum Machine Learning (QML) offers a new approach to analyzing large datasets and extracting valuable insights for faster estimation of customer churn. It can efficiently model high-dimensional feature space using quantum parallelism. Quantum parallelism is a feature of quantum computers that allows them to perform multiple calculations simultaneously, exploiting the superposition of quantum states to explore multiple solutions at once. By leveraging the power of quantum computing, it can perform brisk calculations, enabling businesses to analyze customer data efficiently and effectively.

Using QML, service providers can develop faster predictive models to identify customers likely to churn. These models can process factors such as customer demographics, purchase history, and browsing behavior, thereby increasing the efficiency of finding at-risk customers.

Here are three scenarios where QML can excel:

  • Complex pattern recognition: Churn prediction requires identifying intricate patterns and dependencies in the data, which is difficult for Classical ML. Quantum ML can be leveraged to handle complex computations and analyze high-dimensional data, including call frequency, data usage, location, and customer demographics, to uncover hidden correlations contributing to churn.
  • Real-time churn Prediction: Preventing churn requires timely action, and Classical ML, due to its slower processing time, proves ineffective in this regard. Quantum ML enables real-time churn prediction by providing faster computations and optimizations. It can process data quickly, allowing service providers to identify potential at-risk customers and take proactive measures to retain customers promptly.
  • Handling Big Data: Churn prediction often deals with large datasets that can be computationally intensive to process using Classical ML methods. QML can provide computational advantages for analyzing big data by leveraging the inherent parallelism and quantum algorithms designed for data-intensive tasks. Telecom marketing leaders can use QML to fine-tune models for predicting churn and optimizing parameters like learning rates and regularization factors for improved accuracy without extensive trial-and-error experimentation.

Furthermore, QML could help service providers explore new data analysis and predictive modeling possibilities, potentially leading to accurate insights from the available data. It will allow data teams to explore intricate data relationships, enhance security measures, and handle significant data challenges.

The following table talks about a sample customer churn prediction model, highlighting the advantages of Quantum ML over Classical ML in computing highly complex and interdependent data.

Table 1: Comparison of Classical ML and Quantum ML implementation of customer churn prediction

A notable enhancement in the overall speed, by 152 times, indicates a significant advancement in both computational efficiency and analysis of extensive datasets. This progress highlights the rapid evolution of QML capabilities and underscores the potential to tackle complex problems and derive insights faster.

Graph 1: Scalability7 potential of Classical ML & Quantum ML

As the number of parameters within a dataset expands, implementing QML significantly reduces the overall number of evaluations required for data processing. In the graph, as the number of features/parameters increases, the number of assessments increases exponentially for Classical ML, signifying that more computational power and resources are required to solve a highly complex problem. In contrast, the graph is relatively flat for Quantum ML, indicating that it will be highly efficient in solving complex problems.

Given the widespread anticipation of a big data surge across industries, the escalation in the number of prediction parameters is inevitable. This makes QML’s efficiency imperative for service providers to enable them to save time and drive decision-making capabilities.

Conclusion

Quantum ML is close to a breakthrough in its journey. It can completely reform the machine learning process and models, drastically reducing processing time and significantly improving performance. Leveraging QML can enable service providers compute complex use cases like customer churn instantly and accurately, providing considerable benefits to the service providers.

Categories
Software Intensive Networks

Unleashing high-speed Fiber connectivity

Accelerate Fiber connectivity and reliability with enhanced network orchestration and assurance solutions

The demand for faster and reliable connectivity in the digital era has led to the rise of Fiber optics, transforming our digital experiences. Gartner‘s recent report highlights a growing preference for gigabit Fiber to The Home (FTTH) services among consumers, emphasizing the importance of modern connectivity. By 2025, approximately 60% of Tier-1 service providers are expected to adopt the 10 Gigabit Symmetrical-PON (XGS-PON) technology. Despite this growth, Fiber broadband encounters obstacles like slow setup, connectivity issues, and network fragmentation from diverse technologies. McKinsey notes that 40% of potential users’ decisions and churn rates are influenced by Fiber network experiences.

To address the challenges, service providers need to transition towards automation and data-driven decision-making in network management. This shift facilitates efficient deployment, operation, and maintenance of networks, while also providing valuable performance insights. Achieving this requires the adoption of right technology enablers, allowing for zero-touch provisioning, nearly zero-touch operations, and comprehensive network insights to expedite service setup.

null

Fig : Essential enablers for network transformation success

The fiber network’s lifecycle involves various phases, from planning and design to orchestration and assurance. This insight examines essential enablers for effective orchestration, assurance, and visualization. Through these enablers, service providers can expedite service setup up to 60%, advancing their path towards “Fiber for the Future.”


To succeed, service providers must prioritize zero-touch provisioning, near-zero touch operations, and comprehensive network insights for a faster service setup

    Authors:
  • Dibyendu Dey, Principal Architect
  • Rohit Karthikeyan, Manager – Strategic Insights
Categories
Cloud

Maximize value from cloud migration

Migrate complex online charging systems and network service order management to the cloud holistically.

Service providers across the globe are either considering or have already increased their spending on Cloud. Gartner states, “Cloud will be the centerpiece of new digital services and experiences, which is why 40% of all enterprise workloads will be deployed in the cloud over the next few years”. As Online Charging Systems (OCS) and network Service Order Management (SOM) are at the forefront, moving them to the cloud renders the advantage of coping with the evolving 5G landscape and virtualization. However, service providers are still reluctant to make this transition because:

  • Handling heavy payloads and workflows while juggling through an integration-heavy architecture with zero latency is cumbersome
  • Securing sensitive data such as invoices, Call Detail Records (CDRs), history of customers’ usage, financial transactions, and porting information is critical
  • Adhering to complex data compliance requirements for local and national data regulatory norms

In addition, unlike other CRM systems, the transition of OCS and network SOM to the cloud involves significant challenges due to the complex networks and integrations in the telco architecture. These are critical systems that go through numerous changes every day, and they can’t afford delays. Hence successful cloud migration requires a robust deployment architecture, end-to-end automation, and continuous security to quickly adapt to real-time changes in the environment and accelerate secure releases.

null

Fig: Key focus areas for successful cloudification of OCS and network SOM


Moving OCS and network SOM to the cloud offers phenomenal advantage with the evolving 5G landscape and virtualization. However, service providers are still reluctant to make this transition.

Categories
Salesforce

Transform customer experience with unified order management

Reach new levels of customer centricity with Salesforce

An Order Management System (OMS) is the backbone of the ordering and fulfillment process. A unified OMS is crucial for delivering exceptional Customer Experience (CX) – it is the deciding factor between customers’ loyalty or their willingness to switch to a competitor. A unified OMS can strengthen revenue streams, and reduce expenses, leading to improved business performance.

According to Forrester, 90% of customers believe their experience during the order journey is as significant as the product or service itself. However, a traditional OMS faces significant challenges, such as relying on manual processes, generic order journeys, duplicate leads, and inflexible systems, which negatively impact CX.

Service providers must use a unified order management system to overcome these obstacles. Salesforce OMS, a single platform that facilitates integration with various systems and data sources, delivers a comprehensive view of the customer and their orders across all channels. Although the Salesforce OMS platform is extremely powerful, service providers must take the right implementation approach to achieve maximum benefits.

Salesforce OMS for CX transformation: A strategic implementation approach

null

To deliver a consistent CX, service providers must employ a holistic and customer-centric implementation approach that encompasses the entire order journey, viewed through three different lenses:

  • Lens 1: Examine primary shortcomings during order capturing and address issues
  • Lens 2: Investigate major inefficiencies in the order orchestration stage and resolve issues
  • Lens 3: Analyze, identify, and resolve gaps in customer service stage and deliver exceptional CX through automation

The recommended implementation approach effectively addresses challenges and reduces OMS implementation time by up to 40%, accelerating order journey towards a modernized system and enhancing CX.


Salesforce OMS offers a unified platform that can integrate with various systems and data sources, providing a comprehensive view of the customer and their orders across all channels.

Categories
Product Engineering

Unlock the power of AI to net visual bugs

Accelerate visual testing using AI and achieve better accuracy at lower operational costs

According to Browser stack, 67% of businesses conduct visual testing manually to detect and fix visual bugs.

However, manual testing to detect visual bugs has posed several challenges that affect productivity, such as:

  • Testing multiple aspects – Every single component in a UI requires thorough testing
  • Frequent UI changes lead to a redundant and prolonged testing process
  • Inconsistency in UI across platforms – Different UIs across different digital channels, such as browsers (both mobile and web versions), mobile apps, and operating systems (Android & IOS), make it difficult to conduct thorough testing

To overcome the aforementioned challenges, service providers must use AI to automate the process of visual testing to detect bugs quickly and efficiently, improve accuracy and reduce operational costs.

null

Fig: AI-driven test automation for visual testing


Implementing AI-driven test automation can accelerate testing with better accuracy, enhanced test coverage, and lower operational costs.

Categories
Media & Entertainment

Delivering captivating entertainment experiences

How connected platforms and streaming firms can consistently deliver great CX across complex content delivery networks and ensure the highest levels of quality of experience (QoE)

As the streaming wars intensify, delivering an exceptional customer experience becomes a key differentiator in gaining and retaining subscribers. It’s not just about the content anymore, viewers want a high-quality, engaging, and enriching experience that caters to their needs and desires.

Delivering a brilliant customer experience (CX) and helping digital companies navigate the complex content consumption and delivery ecosystem is critical. Digital companies must contend with multiple variables and validate engineering and customer views of QoE KPIs to ensure optimal experiences.

Major challenges in assuring delightful customer experiences include:

  • Siloed data platforms – A central data hare that collects and correlates data for predictive insights from multiple sources is critical.
  • Lack of continuous monitoring – Implementing a continuous monitoring mechanism for all the critical CX impacting backend video services (100s of microservices) can be difficult
  • Issues with performance tracking – Measuring and monitoring audio/video performance KPIs (such as MOS, re-buffering, slow start-up time, etc.) can be complex


Customer Experience Assurance (CXA) framework continuously enhances engineering and customers’ view of QoE – positioning the company for continued leadership.

Categories
Operational Excellence

Design digitization for faster fibre deployment

Put your Fibre on the Fast Lane with the Fibre Design Framework (FDF) and get deliverables right the first time

As per Research & Market, the global Fibre-to-the-Home/Building (FTTH/B) market is projected to reach US$29.7 B by 2026, growing at a CAGR of 13.1%. Considering such enormous growth and demand for fibre, efficient and commercially viable fibre planning and design is becoming incredibly important.

However, fibre operators face several challenges in Plan and Design phase that lead to budget overruns, missed deadlines, and loss of competitive edge. Here are some challenges:

  • Skill shortage: Slows down the fibre rollout
  • Manual work: Takes longer duration due to multiple hand-offs and paperwork in the High-level Design (HLD) and Low-level Design (LLD) stages
  • Unstandardized designs: Leads to quality/consistency issues in templates and documents
  • Unstructured work culture: Generates incorrect/missed field inputs

To overcome these challenges, fibre operators must consider ways to automate the key fibre design processes. The Fibre Design Framework (FDF) discussed in this Insight can bring high levels of automation in the fibre design process, and accelerate rollout time by 2X. The framework encompasses key components such as –

  • Automated HLD generator: Create an automated high-level design with defined design standards and parameters
  • Task Collaborator: Manage workflows digitally, collaborating tasks across multiple teams, and systems
  • Field Navigator: Capture video-enabled field inputs across existing and planned design network elements
  • Quality Gateways: Integrate quality management gates at crucial junctures


Fibre planning and design has become critical to achieve rollout targets, amid strong growth posted by the
Fibre-to-the Home/Building market estimated at 13.1% this year.

Categories
Product Engineering

Create product differentiation and supercharge revenue growth

The key ingredients connected platforms and software products (CPS) firms must consider to stay ahead of the curve

Explore new opportunities enabled by emerging Cloud, Data, Artificial Intelligence, and Network technologies!

In an industry driven by constant change and innovations, connected platforms and software product (CPS) firms have created tremendous value. Its innovations fuel the digital world, connecting people, things, devices, and networks.

CPS firms need to overcome 4 significant challenges to maintain their competitive edge:

  • Improving the innovation speed – bringing innovative and differentiated products and features faster to the market. 
  • Analyzing large amounts of siloed data sets to understand customer preferences and behaviors, develop customer-centric products, and continually improve customer experience.
  • Increasing the efficiency of product development and engineering processes while keeping costs under control.
  • Gaining access to new markets, extending the reach, and accelerating revenue.

From this industry viewpoint, we share the key ingredients that can help Connected Platforms and Software (CPS) product firms to overcome the above challenges and create product differentiation.


Products on the cloud can scale much faster, reach global customers, and deliver a significantly higher quality of service at lower costs

Categories
IT Agility

Realizing the trustworthiness of AI systems

Implement AI reliability scorecard to accelerate trusted decision-making

Service providers in the Connectedness industry are increasingly relying on digital technologies such as Artificial Intelligence (AI) to remain competitive. However, AI requires a high level of trust because of questions surrounding its fairness, explainability, and security.  Ensuring trust is a priority, as lack of trust can be the biggest obstacle to the widespread adoption of AI.

AI implementations today lack mechanisms to arrive at fair and interpretable predictions, understand the working of complex ML models, and secure the model against adversarial attacks leading to the leakage of Personally Identifiable Information (PII). Also, it is found that most organizations are challenged in ensuring their AI is trustworthy and responsible, such as reducing bias, tracking performance variations and model drift, and making sure they can explain AI-powered decisions.

As the service providers struggle to address the risks arising from bias and privacy issues, implementing Responsible AI assists in recognizing, preparing, and mitigating the potential effects of AI. It also improves transparent communication, end-user trust, model auditability, and the productive use of AI.

null

Fig: Responsible AI: The key to achieve a trustworthy AI system


As the service providers struggle to address the risks arising from bias and privacy issues, implementing Responsible AI helps prepare and mitigate the potential effects of AI

Categories
Operational Excellence

Making operational improvements stick

Embed a Value Driven Continuous Improvement (VDCI) function in your operations organization for superior customer experience and operational efficiency

There is fierce competition between fibre operators to acquire the top spot. And one way to remain competitive is to constantly improve or advance their operations while keeping costs in check and ensuring a seamless customer experience.

However, 60% of all corporate six sigma initiatives fail. Talking specifically about fibre operators, we observed that they still rely on traditional operations improvement activities performed on a one-time or on-demand basis translating to a limited-time benefit only. Also, these activities need to catch up with the fast-changing fibre environment.

As a result, fibre operators suffer from various challenges, like the inability to meet coverage targets on time, overshooting budget, and delays in service delivery. Despite a lean operating model, they fail to sustain continuous improvement, resulting in poor customer experience, huge investments, and unsustainable strategies

The need of the hour for fibre operators is a massive shift in their culture towards continuous improvement. They must embed a Value-Driven Continuous Improvement (VDCI) function into their organization’s structure to instill a culture of constant advancement, reduce OpEx and stay ahead of the competition. The critical stages of the VDCI function are Discovery, Formulation, Execution, and Evaluation.


Continuous improvement is an
ongoing effort, big or small, to improve all elements of an organization.
McKinsey